4Kカメラによるインフラ構造物の遠隔・非接触動的挙動 観測技術

Sensing Technology for Infrastructure using a High Resolution Video Camera

野	田	晃	浩	丸	山	悠	樹	今	Л	太	郎
A	Akihir	o Noda	a	Y	uki Ma	aruyar	na	Т	Taro In	nagaw	a
日	下	博	也	松	岡	弘	大	上	半	文	昭
Hiroya Kusaka			K	Kodai Matsuoka			Fumiaki Uehan				
11	moya	Trusan	a	К	oual iv	Tatsuo	ка	1	иппак		

要 旨

橋梁(きょうりょう)やトンネルなどの社会インフラの老朽化が大きな社会課題となっており,従来の 目視点検に替わる効率的な点検手法の進展が望まれている.そこで筆者らは,4K解像度といった高精細な ビデオカメラを用いて構造物を撮影した動画像から,画像処理により構造物の全体挙動を計測する技術を 開発した.従来の光学式計測手法とは異なり,対象物に特定のマーカーなどを貼り付ける必要はなく,よ り簡便でありながら同時に多点での計測が可能である.この技術を実際の現場に適用し,既存の変位計測 手法と同等の精度を有していることを実証した.また,多点での計測が可能である利点を活(い)かして, 従来手法では困難であった構造物の全体的な動きや部材の動作を直感的に理解しやすい形で可視化できる ことを確認した.

Abstract

Aging social infrastructure such as bridges and tunnels have become a major social issue, and development of an efficient inspection method alternative to conventional visual inspection by people is desirable. We have developed the technology to measure object displacement by image processing. In contrast to the conventional optical measuring method, our method does not require setting a specific marker on the object and it allows multiple point measurement to be performed at the same time. We conducted a field test and the results indicated that our method makes it possible to measure the object displacement with approximately same accuracy as conventional methods. Moreover, we confirmed that the overall and part behavior of the structure, which were difficult to visualize with conventional methods, can be visualized intuitively and easily by taking advantage of multiple point measurement.

1. はじめに

先進国を中心に道路や鉄道の構造物といった社会インフ ラの老朽化は今や重大な社会課題の1つといえる.特にわが 国では高度成長期に建設された構造物が建設後50年を経過 し加速度的に老朽化が進むことが懸念されている.しかし それらを管理していく熟練労働者数は年々減少する傾向に あり,既存の定期目視点検を主とする管理手法から,構造 物の耐荷力を適切に評価し対策の種類や時期を最適化する ことで維持管理の効率化を図るCBM (Condition based maintenance)への移行が検討されている.CBMの実現には, 測定に基づく構造物の状態評価が必須となるが,そのため には高い精度で多くの箇所のデータを容易に計測・収集で きる技術が必要となる.

そこで筆者らは4K画素の高精細な動画像を活用し、イン フラ構造物の動的な挙動(変位や振動)を高精度かつ多点 で計測する技術を開発した. さらにカメラを利用すること で、遠隔から非接触で計測することができ、作業に伴う工 事(足場設置,高所作業もしくは計測用マーカーの設置) や保安業務が不要な簡易で現場適用性の高い計測と,直感 的にわかりやすい結果の可視化を実現した. 本稿では,第2章で従来技術の概要,第3章で本技術の特 徴と計測原理,第4章で従来技術との計測精度の比較検証結 果,第5章で本技術を現場適用した場合の例について述べる.

2. 従来技術

インフラ構造物の変位や振動を計測する技術は,接触式 と非接触式の2種類に大別できる.前者はリング式変位計や 加速度計が,後者はレーザドップラー変位計やビデオカメ ラを用いた画像変位計測技術が代表例として挙げられる. また,画像変位計測技術としては,サンプリングモアレ法 [1]に代表されるような対象となる構造物に特定のマーカ ーを貼り付けることで計測を可能とするターゲット方式が 一般的である.しかし,ここに挙げた従来の計測技術では, インフラ構造物のように大規模な構造物を多点で同時に計 測することは困難であった.

3. 4K動画による変位計測技術

そこで筆者らは、ターゲット方式とは対照的に特定のマ ーカーの貼り付けを必要としないノンターゲット方式の画 像変位計測技術(以下,本手法)の開発を行ってきた.

3.1 従来技術との比較と本手法の特徴

第1表に本手法と従来手法を作業負荷および同時計測可 能点数の観点で比較した結果を示す.本手法においては原 理上,画像内の全ての箇所を計測点とすることができるた め,ターゲット方式に比べ空間的に超高密度な計測が可能 である.さらに画像から変位を計測する際のブロックマッ チングの最適化および多点計測結果を利用したノイズ低減 を行うことで高精度な計測を可能にした.さらに,接触式 に比べてセンサ設置にかかる工事や保安業務,車線規制が 不要なため,作業負荷および計測にかかるコストを削減で きる.

3.2 計測原理

構造物の微小な変位を遠隔から高精度に計測するには, 撮影画像内の時間的な移動量を高精度に求める必要がある. 本節ではノンターゲット方式における高精度な変位計測方 法について説明する.

サブピクセル単位での変位は以下の2つのステップを経 て算出する.

- (1) ブロックマッチングによりピクセル単位で変位を 算出
- (2) (1)で計算される相関値を関数フィッティングにより内挿し、サブピクセル単位の変位(*dx*, *dy*)を推定処理の概要を第1図および第2図に示し、上記2つのステ

〔1〕ブロックマッチングによる変位算出

ップの詳細を以下に説明する.

ブロックマッチングでは、基準となる画像から任意領域 の画像を切り出してテンプレート画像(第1図のTemplate) とし、比較する画像から注目領域(第1図のTarget)を切り 出してテンプレート画像との相関値を算出する、そして最 大の相関値を与える切り出し位置を変位として算出する、 この際、画像の切り出しはどちらもピクセル単位で行う.

相関値の評価には各種計算法が提案されているが、屋外 では輝度変化が生じやすいため輝度変化に頑健でかつ一般 的にも用いられることが多いゼロ平均正規化相互相関 (Zero-mean Normalized Cross-Correlation)を採用している[2].

第1表 各種計測方式の比較

Table	1 C	Comparis	son of	displ	acement	measur	rement	meth	ods
-------	-----	----------	--------	-------	---------	--------	--------	------	-----

	リング式 変位計	レーザドップラー 変位計	ターゲット方式 画像変位計測	ノンターゲット方式 画像変位計測(本手法)
作業負荷	足場設置, 高所作業	反射板設置	マーカー設置	計測対象物への作業 不要
同時計測点数	1点	1点	マーカー設置 個所数以下	制限なし

第1図 ブロックマッチングの説明図Fig. 1 Block matching method

(2) 相関値フィッティングによるサブピクセル変位推定 ブロックマッチングによりピクセル単位で求めた相関値 から二次元相関関数(第2図)を推定する.この相関関数 の相関値が最大となる位置をサブピクセル単位で算出する

第2図 相関関数とサブピクセル推定の概念図 Fig. 2 Conceptual diagram of sub-pixel measurement ために,相関値が最も大きくなる画素(dmax)とその周辺 8画素の相関値に対して二次関数をフィッティングし,二次 関数が最大となる位置(*dx*, *dy*)をサブピクセル単位の変位 とする[2].

高精度推定において誤差要因となるピクセルロッキング (整数値に値が偏る現象)が前記処理で生じることを確認 したため、この影響を低減するためにEstimation Error Cancelation (EEC)と呼ばれる手法を採用した[3]. EECは0.5 画素だけ平行移動した画像も移動量推定に用いることでピ クセルロッキングの影響を緩和する手法である.

さらに,相関関数の曲率が大きくなるようにマッチング を行うブロックのサイズや位置を選択することで精度向上 を図った.

4. 実橋梁による計測精度の検証

本手法による変位計測精度を実際に供用中の鉄道橋において検証した結果を説明する. 第3図に測定対象とした実 橋梁の全景を示す. 当該橋梁は径間長20mの単純桁橋であ る. 単線桁であるため列車通過時の挙動が比較的単純であ り, 精度検証に適した鉄道橋である.

第3図 計測対象とした橋梁 Fig. 3 Overall view of the target bridge

4.1 実験条件

本手法の比較対象として、レーザドップラー変位計(U ドップラーI[4])およびターゲット方式画像計測器[5]によ る計測を同時に行った[6][7].

Uドップラー I はレーザドップラー速度計の出力を積分 することで変位を高精度に計測できる.そのため今回はU ドップラー I の計測結果を基準値とした.一方,画像によ る計測手法の比較として、ターゲット方式は橋梁の径間中 央に設置したLEDターゲットを撮影し,画像処理により変 位を計測した.どちらも多くの測定実績を有し,既存のた わみ計測として一般的な手法である.また,各機器の設置 状況を第4図に示す.本手法のカメラは,橋梁全体が撮影 されるように,橋梁から16.5 mの位置に設置した.この条 件において画像における上下1ピクセルは,橋梁位置におけ

4.2 橋桁(はしげた)たわみ量の計測結果

列車が通過した際の径間中央のたわみを本手法,Uドッ プラーI,ターゲット方式により測定した結果を第5図に 示す.本手法の測定結果は、ターゲット方式およびUドッ プラーIの結果と良く一致しており、従来の計測手法とほ ぼ同等の精度でたわみを計測可能であることがわかる.ま た、列車通過時のたわみ量は最大で5.5 mm程度であり、こ れは画像内ではおよそ0.6ピクセルに相当する.高精度にサ ブピクセル変位が計測できることで橋桁全体を遠隔から撮 影した画像からでも既存手法と同等精度の計測ができてい る.

第2表に各計測手法で得られた最大たわみ量およびUド ップラーIを基準値とした場合の測定誤差を示す.異なる3 手法間の差は高々3%程度であり,それぞれの真値からの 誤差も同程度と考えられる.これは,UドップラーIの仕 様誤差範囲である±5%以内に収まるため,今回の測定条 件であれば本手法が変位計測の実務においても利用可能と 考えられる.

第2表 計測精度 Table 2 Measureptment accuracy

	最大変位 [mm]	誤差 [%]
Uドップラー I	5.47	-
ターゲット方式	5.63	2.9
本手法	5.64	3.2

第6図に最大たわみ量を計測した時刻の画像を示す.こ の時刻は車両の連結部が桁中央にある時であることが画像 から容易に確認できる.このように周囲の状況を同時に撮 影できることによって,視覚的に橋の挙動の背景要因の理 解を助けるだけでなく,今回は実施していないが,荷重位 置とたわみの関係を定量的に解析するなどの活用も可能で ある.

第6図 最大たわみ発生時刻の列車位置と橋桁たわみ Fig. 6 Train position when maximum deflection occurs

5. 現場適用例と画像計測導入の利点の紹介

本手法はカメラで撮影した画像を用いるため,撮影可能 な対象であるならばさまざまな対象物の挙動を計測できる だけでなく,その結果を直感的にわかりやすい形で可視化 することも可能である.そこで本手法を実際のインフラ構 造物に適用した事例を以下に紹介する.

5.1 鉄道橋の橋桁と支承の同時計測

供用中の鉄道橋において,列車通過時の橋桁のたわみと 支承の回転量を計測した例を第7図に示す.支承とは橋梁 の上部構造(主桁,主構)と下部構造(橋台,橋脚)の間 に設置され,橋桁に掛かる荷重を受ける重要な部材である. 第7図は列車通過時の橋桁と支承の変位をベクトルで表示 した例であるが,列車が通過する際に橋桁がたわむことに より支点部に生じる回転変形に追随して支承が回転してい ることがわかる.このように画像を利用して同時に多数の 箇所の変位を計測することで,構造物や部材の動作を直感 的に理解しやすい形で可視化することができる.

第7図 橋桁と支承を同時計測した例 Fig. 7 Visualized results of a bridge girder and bearing

5.2 照明柱の揺れ

道路橋に設置された照明柱の揺れを計測した結果を第8図 (緑線)に示す.本手法においては細い棒状の対象物でも 容易にその動きを計測できる.さらに動きの時刻歴データ を解析することで例えば第9図に示すような振動モードも 計測できる.

第8図 照明柱の揺れ

Fig. 8 Visualized result of the inclination of a lamp post

5.3 斜張橋のケーブルの振動

最後に,列車通過中の斜張橋ケーブルが動く様子を計測 した結果の一例を第10図(黄色線)に示す.ケーブルの張 力はその固有振動数を計測することで推定が可能であるが, 現在は点検時にケーブルごとに加速度センサを設置するな どして固有振動数を計測している.本手法を用いれば非接 触で同時に複数本のケーブルの固有振動数を計測すること ができ,作業の効率化が見込まれる.

第10図 斜張橋のケーブルの動きFig. 10 Visualized movement of cables

6. まとめ

ノンターゲット方式の画像計測技術の開発を行い,実際 の現場において実績のある既存の計測手法と同等といえる 精度で計測可能であることを実証した.さらに本手法によ りさまざまな対象物の挙動を計測できるだけでなく,その 結果を直感的にわかりやすい形で可視化できることを実際 の構造物を例に示した.

今後は、例えば8Kといったさらに高精細なカメラを活用 し、計測アルゴリズム自体の改良による高精度化およびロ バスト性の向上に加えて、損傷・劣化を検出・推定する解 析手法や指標を開発し、インフラ維持管理における人的お よび財政的課題の解決といった社会貢献に寄与することを 目指したい.

本手法はパナソニックシステムソリューションズジャパン(株)の「4K画像活用構造物点検サービス」として2018 年4月よりサービス事業を開始している.

本研究の一部は、(公財)鉄道総合技術研究所が国土交通 省の鉄道技術開発費補助金を受けて実施したものである.

最後に,鉄道構造物を利用した計測・検証実験において は,東日本旅客鉄道(株)長野支社長野土木技術センター の関係各位のご協力を得ました.ここに感謝の意を表しま す.

参考文献

- 森本吉春他, "サンプリングモアレ法による変位・ひずみ分布 計測," Journal of Vacuum Society of Japan, vol.54, no.1, pp. 32-38, 2011.
- [2] 奥富正敏 他, "12-1 パターンの検出," ディジタル画像処理, (公 財) 画像情報教育振興協会, 東京, 2004, pp. 202-205.
- [3] 清水雅夫他,"画像のマッチングにおけるサブピクセル推定の 意味と性質",電子情報通信学会論文誌D, vol.85, no.12, pp. 1791-1800, 2002.
- [4] 上半文昭,"構造物診断用非接触振動システム「Uドップラー」の開発,"鉄道総研報告, vol.21, no.12, pp. 17-22, 2007.
- [5] 岡本陽介他,"運用性に着目した橋梁のたわみ計測システムの 開発",土木学会第68回年次学術講演会概要集, VI-081, pp. 161-162, 2013.
- [6] 松岡弘大他、"ノンターゲット光学式測定による桁たわみ形 状測定の精度検証と適用性検討、"土木学会論文集A2(応用力 学)、vol. 74, no. 2, pp. L_715-L_726, 2018.
- [7] 松尾賢他, "映像処理技術等を活用した橋りょう挙動把握の 精度検証について、" 土木学会第72回年次学術講演会概要集, VI-968, pp. 1935-1936, 2017.

野田 晃浩 Akihiro Noda テクノロジー本部 デジタル・AI技術センター Digital & AI Technology Center, Technology Div.

執筆者紹介

丸山 悠樹 Yuki Maruyama テクノロジー本部 デジタル・AI技術センター Digital & AI Technology Center, Technology Div.

今川 太郎 Taro Imagawa
テクノロジー本部 デジタル・AI技術センター
Digital & AI Technology Center, Technology Div.
博士 (工学)

日下 博也 Hiroya Kusaka テクノロジー本部 デジタル・AI技術センター Digital & AI Technology Center, Technology Div. 博士 (工学)

松岡 弘大 Kodai Matsuoka 公益財団法人 鉄道総合技術研究所 Railway Technical Research Institute 博士 (工学)

上半 文昭 Furniaki Uehan 公益財団法人 鉄道総合技術研究所 Railway Technical Research Institute 博士 (工学)