特

集

熱流体解析技術を活用したシステムLSI向け放熱設計手法の構築

Thermal Design Method for System LSIs Using Thermal Fluid Analysis

要 旨

電子機器においては、数μmレベルの微細な構造から、数+cmレベルの部品が混在しており、それらをまるご と解析することが困難であるため、システムLSIからの放熱メカニズムが不明確であるという課題があった。今回、 Blu-ray Discレコーダーを対象に、システムLSIチップから筐体(きょうたい)内部まで配慮した3次元熱流体解析 技術を構築した.本解析技術により、システムLSIのパッケージ形態、チップ面積、発熱量などの熱設計パラメー タについて、構想設計初期段階で放熱性の影響を考慮することを可能とし、設計上流側での熱対策を実現する熱 設計フローを構築できた.

Abstract

Normally ranging from the scale of micrometers to tens of centimeters, a wide variance in electric device component size poses challenges when simulating the entire device as a whole. Consequently, the mechanisms of heat dissipation from system LSIs were previously unclear. In this study, a 3D thermal fluid simulation that accounts for everything – from LSI chips to the outer casings – was developed for a Blu-ray Disc recorder. The simulation tool enables early-stage implementations of considerations for heat-dissipation performance in the development process for electronic devices. Thus, thermally-sound design procedures, which establish thermal solutions for electronic devices at upstream stages of their development, were constructed.

1. はじめに

近年,電子機器の演算処理量の増大および,その高速 化に伴い,デジタル回路基板に搭載されているLSIは中 央演算装置,メモリー,デジタル信号プロセッサなどの 機能を1チップに統合し,システム化することでセット に必要とされる多機能化を実現している.また,製造プ ロセスを微細化し,高集積化によるコスト優位性を確保 することで,商品の競争力を高めており,今後もこの傾 向は続くと考えられる.

システムLSIの高集積化によるリーク電流の増加と, 動作周波数の高周波数化から,発熱量は増加している.

一方で、製造プロセスの微細化に伴い、チップ面積が 縮小するため、発熱密度の飛躍的な上昇が予想される.

加えて、プロセスの微細化が進行するに伴い、システムLSI内で処理負荷の高い一部の機能ブロックにおいて、 発熱量が高くなり、その部分における温度が局所的に高 温化する「ホットスポット」と呼ばれる新たな課題も顕 在化し始めている[1][2].

これらシステムLSIに関する高発熱密度化やホットス ポットなどの熱問題により、システムLSIの許容温度を 満たせなくなる可能性がある.したがって、電子機器の 性能と信頼性を保証するため、確実な放熱対策が必要と なる.

また,高発熱化するシステムLSIを搭載する電子機器 筐体についても,小型化,高密度実装に伴い放熱環境が 厳しさを増す一方で,ユーザーのやけど防止などの安全 上の観点から,機器筐体温度やファン出口温度などを基 準値以下に抑制しつつ,構成部品の熱対策を行う必要が ある.

このように電子機器の高機能,高集積化に伴う,半導 体パッケージ(以下,PKGと記す)や実装の重要性が増 大している背景を踏まえ,筆者らは低コスト・高放熱性 を実現するPKG構造・材料および放熱デバイスの創出と, その開発に必要な熱解析技術(簡易解析~高精度/微細 構造解析)/実測技術開発に取り組み,半導体製品開発 における熱設計フロー構築を目指し活動を行っている.

本開発では、システムLSIのBlu-ray Disc^(注)(以下, BDと記す)レコーダー搭載状態を想定した熱流体解析 技術構築と各PKGの放熱性能の明確化および熱設計フ ローの構築を行った。

具体的な取り組みを次章以降に示す.

2. システムLSIの放熱環境

現在,当社から既に発売され市場に流通しているBD レコーダーの概観を第1図に,システムLSIの放熱構成 を第2図に示す.

BDレコーダーの主な構成要素としては、①HDD (Hard Disk Drive), ②BDドライブ, ③トランスやコンデンサ

(注) ブルーレイディスクアソシエーションの商標

第2図 システムLSIの放熱構造 Fig. 2 Heat dissipation structure of system LSI

を搭載したアナログ回路基板,④PKG, DDR (Double Data Rate) などを搭載したデジタル回路基板,⑤チュー ナなどがあげられる.筐体には,右側部に吸入口を設け, 背面部の排気口の前に設置した,排気ファンで吸入口か ら外気を誘引し,規定温度以下に収まるように各部品を 冷却している.**第2図**に示すとおり,以下PKGとはシス テムLSIを樹脂や金属で封止したものを示している.

システムLSIについては,発熱量は小さいが熱が発生 する面積が非常に小さいため発熱密度が高くなり,別途 放熱対策が必要となる.

現行の放熱対策は、PKGが搭載されているデジタル回 路基板を天地逆転して設置し、PKGと筐体底面との間に 熱伝導ゲルシートを介在させた構成となっている.上記 構成により、システムLSIで発生した熱はプリント基板 を通じてファンによる対流により空気中へと放熱される 経路と、熱伝導ゲルシートを介して筐体底面へと熱伝導 により放熱する経路に大別され、システムLSIを規定の 温度以下にしている.**第1表**に、BDレコーダーに要求さ れる熱規格条件を示す.

第1表 BDレコーダー熱規格条件(抜粋)

l able l	Ihermal	standards	tor	RD	recorder	

システムLSI上限温度	115 °C
筐体底面上限温度	70℃ (45℃環境)

3. 熱設計フロー上の課題とアプローチ

3.1 システムLSIの熱設計フロー上の課題

システムLSIのPKG構造選定過程において, 伝送特性, 実装性に並び, チップからの放熱は重要な要素の1つで ある.

第3図(a) に示すように,従来の熱設計フローでは, レイアウト設計,配線パターン設計などを行った後に, システムLSI単体で消費電力やPKG単体放熱特性の評価 を行うために,後付けでの熱対策が必要となり,長い後 戻り工程が発生するという課題があった.

また,一般に電子機器筐体の熱解析では,ボールグリッ ドのようなミクロンオーダーの微細な構造から,筐体外 形のような数十cmのオーダーの部品が混在しているた めに,単純にメッシュを割り当てただけでは,メッシュ 数が膨大になり汎用ワークステーション環境下では解析 が不可能,または計算コストが見合わないなどの課題も 挙げられる.

Fig. 3 Flow charts of thermal design

3.2 熱流体解析技術によるアプローチ

前節で述べたように,カット&トライの実験による評価では,多大な開発工数が必要となるが,新規PKGのセット実装状態まで見据えた大規模な熱流体解析を単純に行うことも困難であった.

そこで, 第3図 (b) に, 今回構築に取り組んだ新規 PKGのセット実装状態の熱対策について, 設計上流側で の対応を可能とする新規熱設計フローを示す.本フロー では, 熱課題を前倒しで解決するために, 構想設計段階 および詳細設計段階でシミュレーションを活用した放熱 チェックを行うことにしている.その結果として,試作・ 測定時の後戻りが無くなり,開発期間短縮を図ることが 可能となる.

新規熱設計フローを実現するために,具体的に以下の 3つの手順でフロー構築に取り組んだ.

- (1)汎用ワークステーション環境下で詳細解析を可能と する解析モデルを構築し、合理的な計算コストを実 現
- (2) システムLSIの対象PKGとして、PBGA(Plastic Ball Grid Array)およびFCBGA(Flip Chip Ball Grid Array)の2種類について、熱的な観点から各PKGの放熱限 界性能を明確化
- (3)構想設計初期段階で、熱設計者・解析技術者でなく とも簡易的にかつ精度よくパラメータ間の影響を把 握できる相関式を構築

4. 熱流体解析技術の確立

4.1 解析モデルの検討

解析精度を確保しつつ,メッシュ数を削減するために, 以下に示す点に配慮し解析モデルの構築を行った.

- ・ 流れ場に応じてメッシュ分割量を最適化
- BDドライブ, HDDなどの発熱体モデル化
- P-Q特性を配慮したファンモデルを適用
- ボールグリッドなど微細部接触熱抵抗モデル化
- ・ 基板銅箔層の方向性を考慮した等価熱伝導率
- システムLSI内部の非均一発熱状態を考慮

上記ポイントを踏まえることで、メッシュ数を200万 点以下に抑制しつつ、**第2表**に示す適正な解析条件を用 いることで、時間を要する解析においても約0.5日/形 状以内を実現できた.

第2表 解析条件

Table 2 Simulation parameters

	連続の式		
基礎方程式	運動方程式		
	エネルギー式		
乱流モデル	K-ωSTT 2方程式モデル		
輻射モデル	Discrete Ordinate Model		
解法	圧力べ	ース陰解法	
空間スキーム	Pressure	: PRESTO	
	Momentum	: QUICK	
	Turbulent Kinetic Energy	· : QUICK	
	Specific Dissipation Rate	: QUICK	
	Energy	: First Order Upwind	
	Discrete Ordinates	: First Order Upwind	

4.2 解析精度検証

現行機種の実験による温度評価結果と解析結果の比較

を行い、精度の検証結果を、第4図に示す.

第4図より,実測との誤差が6℃程度乖離(かいり) している部品が存在するが,全体的に相関はよく取れて おり,実測との比較で解析精度は部品平均で4.2%となっ ている.

特に,重要であるデジタル回路基板に搭載されている システムLSIの温度は±2.5 ℃以内で一致している.これ は,部品と基板の接触熱抵抗(はんだと空気の合成熱抵 抗)の与え方や,銅箔(どうはく)とガラスエポキシ樹 脂の積層構造の複合材料である基板のモデリングが適切 に行われたためと考えられる.また,システムLSIから 筐体への放熱経路が正しく再現できていることから,筐 体底面温度も±1.5 ℃で一致しており,今後の放熱構造 の開発に適用可能であると考えられる.

Fig. 4 Inspection of simulation accuracy

5. 各PKGにおける放熱限界性能

5.1 PKG解析モデル

構築した熱流体解析技術により,BD搭載状態におけるPBGAおよびFCBGAの放熱限界性能を把握するために,第3表に示す解析モデルにて計算を行った。

各PKGモデルについて、チップ面積、発熱量、熱伝導

第3表 PKG周り解析モデル

Table 3 Analytical model for regions around PKG

PBGA	Al放熱板無	封止樹脂	ゲルサイズ:30×30×4
	Al放熱板有	Al放熱板	ゲルサイズ:30×30×4
FCBGA	金属CAP無	システム LSI	ゲルサイズ:20×20×4
	金属CAP有	金属CAP	ゲルサイズ:20×20×4

特

集

ゲルシートの熱伝導率をパラメータとして評価を行い, 各パラメータの影響の明確化に取り組んだ.ここで,放 熱限界性能とは,システムLSI温度および筐体底面温度 の最大値が前章の第1表に示した熱規格条件範囲内に収 まる上限値である.

5.2 各PKGの放熱限界性能

第5図は, 横軸をチップ発熱量, 縦軸を発熱密度(発 熱量をチップ面積で除した値)で表した各PKG解析結果 の一例である.

図中の各シンボルは、想定する4種類のチップ面積に 対し、今回パラメータ解析を行った発熱量を実線で結ん でおり、また、各線(長点線、点線、一点鎖線、実線)が、 各PKGのシステムLSI温度と筐体底面温度が熱規格を遵 守するBD搭載状態におけるPKGの放熱限界性能を解析 により求めた結果である.

なお,各線の水平および垂直線は,解析対象外である ため,確実に放熱可能な水準を仮定して線引きしている.

以上より, 第5図は、シンボルが各線より原点側の領 域に入っている場合,各PKGの放熱が可能であるという ことを示している.

なお、本解析例では熱伝導ゲルシートの熱伝導率λ= 0.5 W/mK一定の場合としている.

解析結果より,チップ面積が小さくなり,発熱密度が 高まることで,放熱限界性能が低下することを明確にす ることができた.このことより,今後,さらにチップ面 積が縮小した場合,1章で述べたホットスポットの影響 が顕著となり,放熱性能の低下が懸念される.

20 19 チップ面積 18 40 mm² FCBGA金属CAP有 17 ← 52 mm² **—** 66 mm² 16 80 mm² 15 14 [W/cm²] 13 12 FCBGA金属CAP 8 6 t 冷却可能 PBGA AI放熱板有 5 領域 2 3 4 6 8 10 11 12 発熱量 [W]

次に,黒丸印を実線で結んだチップ面積を80 mm²と

第5図 各PKGにおける放熱限界性能

Fig. 5 Maximum heat dissipation performance of each PKG

した場合を例に、各PKGの放熱性能変化を検討する. PBGAについてはPKG表面にAl放熱板を設置した場合に おいても、7.0W(点線)から7.5W(一点鎖線)と放熱 性能向上が小さいことに対し、FCBGAは金属CAP設置 により、放熱性能が6.5W(長点線)から9.0W(実線) と大幅に向上していることがわかる.

5.3 システムLSIからの放熱メカニズム解明

前節のPKG構造に起因する放熱限界について、さらに 放熱性能向上の可能性を見いだすために、システムLSI からの放熱メカニズム解明に取り組んだ.

第6図は, チップ面積40 mm², 発熱量8 Wの条件での 各PKGにおける, 放熱量割合, システムLSI温度, 筐体 底面温度を示したものである.

全体的な傾向として, チップからの熱の70%弱は基板 へと伝わっていることがわかる.本解析対象では, シス テムLSIで発生した熱が筐体側に伝わりすぎることを抑 制し,筐体底面温度上限を超えないように熱伝導ゲル シートの熱伝導率で調整しているため,本放熱方式では, 基板側の放熱負担が大きくなると考えられる.

PBGAについてはチップを封止している樹脂の熱伝導 率が小さく、チップで発生した熱が筐体側へと伝わりに くい.それゆえ、Al放熱板を設置したPKGでも放熱性能 の向上は小さく、構造的にこれ以上の放熱性向上は望め ないと考えられる.

一方、FCBGAは、銅製の金属CAPで封止した場合、 システムLSIから金属CAP面方向に熱が拡散しやすいた め、PBGAに比べ熱伝導ゲルシートへの熱が均一に伝わ り、かつ、空気への放熱量割合が増加することで、大幅 にシステムLSI温度が低下したと考えられる.また、本 解析対象においては、空気への放熱量割合が10%未満

Fig. 6 Analysis of heat discharge in each PKG

と非常に小さいことがわかる.すなわち,空気への放熱 量割合を増加させる構成を実現すれば,従来より大発熱 量のFCBGAの放熱を可能にすることを示唆している.

6. 設計指針抽出用相関式への展開

6.1 相関式の構築

構築した熱流体解析技術により、システムLSI実装状 態で筐体の影響も含めたさまざまな熱課題を明確にする ことが可能となった.しかし、PKG構想設計初期段階に おいてはシステムLSIからの発熱量やチップ面積などの 仕様が未定な場合が多い.

そこで、PKG選定を行う構想初期段階において、迅速 にシステムLSI温度とBDレコーダーの筐体底面温度を算 出するための簡易判断指標の構築に取り組んだ.

前章の詳細解析により求めた結果から、システムLSI の発熱量や熱伝導ゲルシートの熱伝導率などのパラメー タに対し、システムLSI温度および筐体底面温度がほぼ 線形で増減していることがわかった.これは、本解析対 象においてはシステムLSI周りの熱の流れは熱伝導が支 配的であることから、各パラメータ間の影響に重相関性 があると考えた.

そこで, 第7図に示すモデルのように, PBGA, FCBGA の各種パラメータの影響を簡易的に算出可能とする相関 式を, 重回帰分析を活用し, 以下のように構築した.

 $T_{LSI} = K_1 + K_2 \lambda + K_3 Q + K_4 A + K_5 P \cdots (1)$ $T_{case} = S_1 + S_2 \lambda + S_3 Q + S_4 A + S_5 P \cdots (2)$

 (1)式、(2)式中のK_{1~5}、S_{1~5}は重回帰分析により 求まる偏回帰係数であり、重相関係数はいずれも0.97以 上と高い相関を得ている。

また、右辺第5項Pはダミー変数であり、PBGAにおいて、AI放熱板有りの場合は1を、無しの場合は0を代入することで放熱板PKGへの影響を考慮できる.なお、FCBGAも同様に、金属CAPの有無を考慮できる.

6.2 詳細解析と相関式の比較

第8図に, FCBGAに詳細解析と相関式より算出した結果の比較例を示す. 第8図より,相関式により求めたシステムLSI温度は±2℃以内,筐体底面温度は±1℃以内となり,詳細解析と一致していることがわかる.

すなわち、本相関式により、熱設計者・解析技術者で なくとも、簡易的にかつ精度よくパラメータ間の影響を 把握できる.さらに、PKG構想設計初期段階で活用し、 設計上流側でのPKG熱課題に取り組むことが可能と なった.

今後,さまざまなPKG形態について詳細解析により得られた結果をデータベース化して蓄積し,相関式の適用 範囲を拡充することができると考えられる.

7. まとめ

BDレコーダーの搭載を想定した場合において、シス テムLSIチップから筐体内部まで配慮した3次元熱流体解 析技術を構築し、システムLSIのPKG形態(PBGA, FCBGA)・チップ面積・発熱量をそれぞれ熱設計パラメー タとしたときの選定指針となる放熱限界性能を熱流体解 析にて明確化した.

また、FCBGA、PBGAに関して、熱流体解析から得ら れた解析結果を重回帰分析により、各熱設計パラメータ の影響を考慮した設計指針抽出用簡易相関式に落とし込 み、詳細解析を用いずとも簡易的にシステムLSI温度と 筐体底面温度を算出可能とした.

参考文献

- Ravi S. Prasher et al., "Nano and micro technology-based nextgeneration package-level cooling solutions," Intel Technology Journal, vol.9, issue4, pp.285-296, 2005.
- [2] Watwe A. et al., "Thermal implications of non-uniform die power map and CPU performance," Proceedings of InterPACK'03, p.35044, 2003.

特集

執筆者紹介

松元 昂 Subaru Matsumoto R&D本部エネルギーソリューションセン ターエネルギーシステム開発室 Energy System Development Office, Energy Solutions Center, R&D Div.

小森 晃 Kou Komori R&D本部 エネルギーソリューションセン ター エネルギーシステム開発室 Energy System Development Office, Energy Solutions Center, R&D Div.

鈴木 宏明 Hiroaki Suzuki デバイス社 半導体事業グループマニュファ クチャリング統括部 Manufacturing Div., Semiconductor Business Group, Industrial Devices Company

大谷 克実 Katsumi Ootani デバイス社 半導体事業グループマニュファ クチャリング統括部 Manufacturing Div., Semiconductor Business Group, Industrial Devices Company