水中に分散したTiO2光触媒による水浄化

Water Treatment Employing Suspended TiO2 Photocatalyst

猪野大輔 丸尾 ゆうこ Daisuke Ino 丸尾 ゆうこ

行天 久朗

要 旨

TiO2ナノ粒子の光触媒活性とマイクロ粒子の固液分離性能を兼ね備える"分散型TiO2"を合成し、光触媒によ る水浄化の実証研究を行った.本研究の"マルチファンクショナルフォトリアクター (MFP)"において、処理 水と混合して懸濁状態にある分散型TiO2に紫外光を照射することにより、従来の固定型TiO2と比べて桁違いの水 浄化の効果を得た.処理後の水と光触媒の固液分離は、分散型TiO2とMFPの組み合わせのみで有効に機能した. 処理水における残留触媒濃度は30 ppm以下であった.分散型TiO2の光触媒性能を水中の医薬品類(PPCPs)分解 において評価したところ, 平均粒子径d=5.0 µmの分散型TiO2の性能は, 基準となるd=0.2 µmのDegussa P25 TiO2 と同程度で、反応速度定数比では73%であった.

Abstract

Water treatment based on TiO₂ photocatalyst for the removal of dissolved contaminants in water has been investigated by employing a "Suspended TiO₂" and a "Multifunction photoreactor (MFP)". By establishing a basic concept wherein suspended TiO₂ photocatalytic particles are thoroughly dispersed in treated water during ultraviolet (UV) irradiation, we have broken away from the traditional approach in which inactive TiO₂ thin films were prepared on the surface of substrates. In addition, the combination of suspended TiO₂ and MFP dramatically increases the feasibility of separating the photocatalytic particles from the treated water, resulting in residual suspended TiO₂ being below 30 ppm. Furthermore, it was clarified that the photoactivity of suspended TiO₂ was comparable to that of commercial P25 TiO₂ for the removal of pharmaceuticals and personal care products (PPCPs) in water.

1. はじめに

21世紀の現在,世界各地で渇水問題が起きている.水 は決して万人に平等なものではない.加えて、医薬品類 (PPCPs; pharmaceuticals and personal care products), 殺虫 剤および農薬の過度の使用,工業廃水の放出,ごみの埋 め立て, 重金属の流出などにより表流水や地下水の汚染 が確実に進行している[1][2]. BRICsなど経済発展と人 口増加の著しい国々では, 安全な飲料水の確保と供給は 国家の最重要課題に位置づけられている. またEUでは 欧州水枠組み指令により、PPCPsのような生態系に対し て潜在的なリスクとなり得る特定化学物質の排出規制を 進めている. このようなグローバルな水危機の状況下に おいて、環境負荷が小さくサステナビリティーに優れた 新しい水浄化技術の実現が強く求められている.

TiO₂光触媒を用いた水浄化技術は、汚染物質を分解す るための消費薬剤が不要で、太陽光のような自然エネル ギーを利用できることで知られている. この水浄化技術 ではTiO₂ナノ粒子を処理水の中で懸濁状態にし、その場 に紫外光を照射することにより、水からOHラジカルを 発生させることができる. 生成されるOHラジカルは非 常に活性が高い酸化種として知られていて、例えば PPCPsのような難分解性化学物質や、従来の紫外光殺菌 では対処できない微生物をも死滅させる. TiO₂ナノ粒子 は、処理後の水から回収すれば原則として何度も再利用

することができる.

これまでにTiO2光触媒を用いた高効率な水浄化技術の 研究が盛んに行われてきた. しかしながら平均粒子径d <200 nmの超微細なTiO2ナノ粒子を水中から固液分離す ることにより回収し、再利用する方法については未だ結 論は得られていない.一般的な沈殿法で固液分離を試み た例では、固液分離に最低でも数時間単位の時間を必要 とし、沈殿を加速するためには追加薬品を投入して水の pHを精密に調整する必要があった[3]. 一方で,バイン ダーを用いてTiO2のナノ粒子を固体表面に固定するか, またはゾルゲル法で固体表面をTiO2コーティングして, 固液分離を容易にする手法も考案されてきた. しかしな がら、これら固定化TiO2では活性な触媒表面積の減少や 物質輸送の鈍化を引き起こすことが問題に挙げられてき た.実際、固定化TiO2による水処理の効率は、懸濁状態 のTiO2ナノ粒子に比べて桁違いに減少する[4].

筆者らは、"分散型TiO₂"と称する、懸濁状態のTiO₂ ナノ粒子と同等の光触媒活性とマイクロ粒子の分離しや すさを兼ね備えるTiO₂光触媒を合成し、加えて、分散型 TiO2を処理後水から固液分離する機能を備える"マルチ ファンクショナルフォトリアクター(MFP)"を開発した. この分散型TiOっを用いたPPCPsの分解除去の性能評価 と, MFPによる水浄化技術の原理を実証したのでここに 報告する.

2. TiO₂光触媒の原理とPPCPs分解除去の速度論

この章ではまず,TiO₂光触媒における光化学反応の基本原理について簡潔に述べる.TiO₂の固体表面に波長A = 380 nm以下の光が照射されると,基底状態から励起状態への電子励起が起こる.励起状態ではTiO₂固体内部において荷電子帯の上限近傍に正孔が,伝導帯の下限近傍に励起電子がそれぞれ生成される.この励起電子と正孔は、少ない確率ではあるがTiO₂固体内部からその表面へマイグレーションを起こし、外来の分子と反応を起こす.例えば正孔は、TiO₂固体表面近傍のH₂Oを還元しその結果としてOHラジカルを生成する.このOHラジカルは、OHイオンから電子が1つ失われた電子構造を有するため不安定な過渡種であり、さらに電子吸引性がとても強いため非常に強力な酸化種となる.例えばPPCPsなどの難分解性有機物の分解は、このOHラジカルが重要な役割を担っている.

次にPPCPsの分解除去実験の詳細について述べる. TiO₂試料は粉末状のナノ粒子として広く用いられている 市販のP25 TiO₂ (Degussa)を用いた.3章で述べる分散 型TiO₂は,ゼオライト(HY type,Si/Al比=15)とP25 TiO₂のみを原料として用いて合成した.合成ではまず, 0.1 mMのHCl水溶液を用いてゼオライトの表面を活性化 処理した.HClを十分取り除いた後に,P25 TiO₂前処理 済みのゼオライトを質量比1:3で水溶液中で混合した. この混合液に超音波を1時間照射して,凝集している TiO₂を過渡的に分散させてゼオライトの表面に再吸着さ せることにより,分散型TiO₂を得た.

実験には,第1表に示した5種類のPPCPsを用いた.こ れらPPCPsを含む水溶液の調製は,純水中に目的の分子

Substance	Chemical structure	Application
lbuprofen イブプロフェン	Соон	Autiphlogistic 解熱鎮痛剤
Diclofenac ジクロフェナック	HOOC	Autiphlogistic 解熱鎮痛剤
Carbamazepine カルバマゼピン	O NH2	Antiepileptic 抗てんかん薬
Sulfamethoxazole サルファメトキサ ゾール	H ₂ N S N H	Antibiotic 抗生物質
17β-estradiol エストラジオール	ностори	Hormone 女性ホルモン

第1表	実験に用いたPPCPsの分子構造と主な用途
Table 1	Chemical structure of PPCPs investigated

を溶解させることにより行った.水溶液中の分子の濃度 は1000 μg/Lである.17β-エストラジオールの場合のみ, 純水に0.1%のエタノールを加えて溶解を促進させる必 要があった.このPPCPsを含む水溶液の中にP25 TiO₂を その濃度が1g/Lになるように混合し,1時間の超音波攪 拌(かくはん)および1時間の磁気スターラー攪拌によ り水溶液中でP25 TiO₂を均一分散状態にした.P25 TiO₂ とPPCPs水溶液を混合してから2時間経過した際に観測 されるPPCPsの減少量を,TiO₂表面における初期吸着量 A_dとした.光反応容器は直径2.3 mmの大気開放系の容 器で,PPCPsを含む水溶液の量は5 mLであった.

光触媒反応に用いた単色光の光源はXeランプにバン ドパスフィルターを組み合わせて得た.出射光の半値全 幅は10 nmである.特に記述の無い限り,光の波長はλ = 350 nm,光強度は容器の底面においてP=1 mW/cm²で ある.光反応後の水溶液を高速液体クロマトグラフと質 量分析器(HPLC/MS, Agilent 1260 & 6130)で定量およ び定性分析した.イブプロフェンと17β-エストラジ オールのみ質量分析器のネガティブイオンモードで測定 した.

第1図に、P25 TiO₂を用いて5類のPPCPsを分解除去した結果を示す. 横軸は光照射時間tで、初期時間(t = Int)にP25 TiO₂を水溶液に投入し、そこから2時間後のt = 0分において光照射を開始した. 縦軸はイブプロフェン(m/z = 205.3), ジクロフェナック(m/z = 296.0), カルバマゼピン(m/z = 237.1), サルファメトキサゾール(m/z = 254.0),および17 β -エストラジオール(m/z = 271.2)の親分子の濃度[M]である. すべての分子において、光照射時間の増加とともに[M]の減少が観測された. その

第1図 P25 TiO₂光触媒による水中のPPCPsの分解(○;イブプロフェン, ■;ジクロフェナック, ◇;カルバマゼピン, △;サルファメトキサゾール, ☆;17β-エストラジオールの結果)

Fig. 1 Water treatment for PPCPs removal by using P25 TiO₂ (λ = 350 nm, P = 1 mW/cm², Experimental results of each PPCP are depicted as ○; Ibuprofen, ■; Diclofenac, ◊; Carbamazepine, △; Sulfamethoxazole, ☆; 17β-estradiol, respectively)

なかでも特にイブプロフェンとジクロフェナックは急激な[*M*]の減少が観測された.

観測されたPPCPsの分解がP25 TiO₂の光化学反応に由 来するものかどうかを明らかにするために,ジクロフェ ナックを例としてアクションスペクトルを測定した.結 果を**第2図**に示す. 横軸はP25 TiO₂の励起波長, 左縦軸 はジクロフェナック分解反応の量子収率φMである.励 起波長が短くなるとともにφMは単調増加の傾向を示し た. λ=380 nm近傍からφMの立ち上がりが観測された. この傾向はP25 TiO₂の吸収スペクトルの特徴とよく一致 している. したがってジクロフェナック分解反応の初期 過程はジクロフェナックによる紫外光の直接吸収ではな く, TiO₂を介した紫外光の吸収であるといえる.

TiO₂による紫外光吸収とその後に続くOHラジカル生 成反応がPPCPsの分解に寄与していると推測される.こ の点を明らかにするためにTiO₂光触媒によるジクロフェ ナック分解反応の素反応をHPLC/MS分析で追跡した. 結果, m/z=312.0の1次反応物質Aが観測された.この物 質Aの帰属について,ポジティブイオンモードで観測さ れるジクロフェナックと物質Aとの質量差がΔm/z=16で ある事実を考慮すると,物質Aはジクロフェナック, OHラジカル,および水中の溶存O₂が反応して生成され たジクロフェナックOH付加体であると結論することが できる.ジクロフェナックならびにPPCPsの分解はその 100%がTiO₂の光触媒反応によるものであろう.今回の 解析で明らかになった一連の化学反応式を(1)式に示 した.副生成物のハイドロペルオキシルラジカル(HO₂-) は,OH付加体の開環反応に寄与するといわれている[5].

- 第2図 P25 TiO₂によるジクロフェナック分解のアクションスペクトル(黒丸)およびジクロフェナック水溶液(点線)と
 P25 TiO₂(鎖線)の吸収スペクトル
- Fig. 2 Plots of quantum yield for photochemical degradation of diclofenac versus λ of excitation source. Absorption spectra of diclofenac solution (dot) and P25 TiO₂ (dash) are superimposed in this figure

反応速度論を用いて異なる5種類のPPCPsの分解速度 を比較した.一般に光化学反応における反応速度定数k は,(2)式で表される[5].

$$k = \phi_M E_p 2.303 \varepsilon_{\lambda} \iota \frac{A}{N_A V} \quad \dots \quad \dots \quad \dots \quad \dots \quad (2)$$

ここで ϕ_M は量子収率, E_p は照射光子量, ϵ_λ はある λ に おけるモル吸光度係数, ι は光路長, Aは照射表面積, N_A はアボガドロ数, Vは光の照射体積である. また光照 射による実験の分子濃度[M]の減少速度は, kを用いた 積分形の次の(3) 式で表すことができる.

TiO₂光触媒によるPPCPsの分解メカニズムを明らかに することにより,水浄化装置における物質の分解速度を 事前に予測することが可能となる.TiO₂表面における分 子の吸着量は,その分子の分解速度と無関係であった. したがってTiO₂表面で生成されたOHラジカルとPPCPs 分子の反応場は,TiO₂表面ではなく水溶液中であること が示唆される.観測された反応速度定数は,均一系にお けるOHラジカルと各PPCPs分子の反応性で説明できる 可能性がある.しかしながら,より確かな結論を得るた めには,TiO₂表面の分子分光などを用いて速度論以外の 観点から研究することが不可欠であろう.

- 第2表 各PPCPsの分解の反応速度定数 k とTiO₂表面への初期吸着 量 A_d (TiO₂濃度1 g/L)
- Table 2Series of rate constant k for PPCPs removal and initial
adsorption amount A_d of PPCPs on surface of TiO2

	k [min ⁻¹]	A_d [µg/L ⁻¹] X 10 ⁻⁶
ジクロフェナック	1.96	351
イブプロフェン	1.34	624
カルバマゼピン	0.55	492
サルファメトキサゾール	0.51	39
17β-エストラジオール	0.15	409

特

隼

3. 分散型TiO₂による水浄化技術

TiO₂光触媒は処理水と混合し懸濁状態で紫外光を照射 すると、本来の光触媒性能を最大限に発揮することがで きる.筆者らはこの基本理念を元に、固液分離に適した 分散型TiO₂を合成した.さらに加えて、水中で懸濁状態 の分散型TiO₂に紫外光を照射し、処理後には分散型TiO₂ と処理後水を効果的に固液分離することができる、MFP の開発も同時に行った.**第3図**[上]はMFPの模式図であ る.このMFPは光化学槽と、三洋電機(株)のアクアク ローザの技術を発展させたハイブリッド分離槽から構成 されている.原水は図の左から供給し右上部から処理後 水として取り出す.得られる水の流量は、ハイブリッド 分離槽内のフィルター面積で規格化して計算すると、1 時間当たり60 L/h・m²である.

MFPの詳細を水処理の流れに沿ってより具体的に説明 する.まず原水は光化学槽に導入される.ここでは原水 に分散型TiO₂の濃縮液が投入され,触媒濃度4.0g/Lの懸 濁液が作成される.この懸濁液に紫外光を照射すること により,原水に含まれる汚染物質は効率的に分解除去さ れる.処理が完了した分散型TiO₂の懸濁液は,次の工程 であるハイブリッド分離槽に導入される.この分離槽は, 自然沈降分離とマイクロフィルタレーションを組み合わ せた固液分離装置である.分散型TiO₂は推定比重が1.2 ~1.3であるので,数分間で自然沈降の挙動を示す.そ

- 第3図 [上] 光化学槽(A) とハイブリッド分離槽(B)を備えるマルチファンクショナルフォトリアクター(MFP)の模式図.
 [下] P25 TiO₂(C)および分散型TiO₂(D)を用いた場合のMFPからの出力流量の時間依存性
- Fig. 3 [Upper] Schematic illustration of multifunctional photoreactor (MFP) equipped with photochemical bath (A) and hybrid separator (B).

[Lower] Output flux from hybrid separator via microfilteration versus operating time with adopting (C) P25 TiO_2 and (D) Suspended TiO_2 , respectively

の結果,ハイブリッド分離槽の下部で分散型TiO₂の濃縮 スラリーが得られる.さらに分散型TiO₂を含まない処理 水を得るために,平均穴径が0.42 µmのマイクロフィル ターを用いて精密ろ過を行う.分散型TiO₂の平均粒子径 は*d* = 5.0 µmで,フィルターの穴径よりも十分大きい. したがってろ過の効果は高く,処理水における分散型 TiO₂の残留濃度は30 ppm以下になる.

MFPにおける出力流量の時間依存性を, 第3図[下]に 示す.分散型TiO₂とMFPの組み合わせでは,出力流量が 24時間安定化する様子が観測された.流速は60 L/h・m² 以上であった.これとは対照的に平均粒子径d<200 nm であるP25 TiO₂とMFPの組み合わせでは,数時間のうち に出力流量の急激な減少が見られ,10時間が経過すると フィルターの完全目詰まりが起こった.

TiO₂ナノ粒子と水の分離に関する過去の研究文献で は、P25 TiO₂をウルトラフィルタレーションによって限 外ろ過を行った例[6]や周期的な逆流洗浄工程を伴うク ロスフローろ過[7]を行った例がある.これらの論文の 方法では、固液分離工程がバッチ処理になり効率のロス が生じていた. さらに吸引圧力を高めるために大型のポ ンプと高強度のフィルターが不可欠で、フィルターは定 期的にメンテナンスを行う必要があった.本研究が過去 の文献と大きく異なる点は、分散型TiO2の粒子径がフィ ルターの穴径よりも10倍以上大きいことにある.分散型 TiO2の大部分はフィルター表面にとどまるため目詰まり を起こさない.分散型TiO2を含む水の粘度が低いために, 精密ろ過を行ってもフィルターの再表面に薄いケーク層 が形成される程度であった. 精密ろ過によるフィルター 内部の減圧は-0.001 kPa以下で安定した.加えて分散型 TiO2は濃縮スラリー液として連続的に回収することがで きた.

本研究で開発した分散型TiO₂の光触媒性能が,平均粒 子径1/10以下の市販のP25 TiO₂と比べてどの程度なのか は非常に興味深い.そこでジクロフェナックの分解にお いて両者の反応速度定数の比較を行った.TiO₂濃度が 0.1 g/Lにおいて反応速度定数はそれぞれk(分散型TiO₂) = 0.375 min⁻¹, k(P25 TiO₂) = 0.512 min⁻¹であった.分 散型TiO₂はP25 TiO₂の73 %の光触媒性能であることが明 らかになった.

過去の文献では、P25 TiO₂を反応容器の内壁にコー ティングした固定化光触媒の光触媒性能はP25 TiO₂の 5%であると報告されている[4]. また、P25 TiO₂をガラ ス繊維の表面に固定化して作成した筆者らの実験におけ る固定化光触媒の光触媒性能は、P25 TiO₂のわずか1~ 2%であった.今回開発した分散型TiO₂の光触媒性能は、 これら固定化光触媒よりも極めて高いといえる.すなわ ち,分散型TiO₂は,粒子を懸濁状態にすることで得られ る光触媒性能を十分に維持していると結論することがで きる.

第4図は分散型TiO₂の表面近傍を拡大した透過電子顕 微鏡像である.Aで示したゼオライト粒子の表面にBで 示した無数のP25 TiO₂粒子が担持されている様子がよく わかる.分散型TiO₂の合成において筆者らは,テトラエ トキシシランやチタニウムアルコキシドなど従来よく用 いられるバインダーの類を一切使用してない.分散型 TiO₂の高い光触媒性能は,この表面構造に由来している と考えられる.筆者らの推論では,ゼオライト粒子と P25 TiO₂粒子の界面における静電相互作用が粒子間の結 合に大きく寄与していると考えている.この結合メカニ ズムの解明は今後の研究課題であろう.

第4図 分散型TiO₂の表面近傍を拡大したTEM像 Fig. 4 Surface TEM image of suspended TiO₂ A; zeolite, B; P25 TiO₂

4. まとめ

本論文で筆者らは、分散型TiO₂の合成とMFPの開発を 行うことにより、分散型TiO₂光触媒による水浄化技術の 実証研究を行った.水中のPPCPs分解において、平均粒 子径d=5.0 µmの分散型TiO₂の性能は、d=0.2 µmのP25 TiO₂に匹敵し、反応速度定数比で73%であった.一方、 固液分離性能に関して検証を行った結果、MFPは分散型 TiO₂の場合のみで有効に機能し、処理水における残留触 媒濃度は30 ppm以下となった.この技術により、従来で は困難であった水中に分散したTiO₂光触媒による水浄化 の原理実証を行うことができた.

分散型TiO₂光触媒の採用による技術的ブレイクスルー は、例えば太陽光利用のアプリケーションに新たな可能 性をもたらす、晴天屋外の太陽光は*λ*<350 nmのUV成 分を数%程度含む(光強度としては<5 mW/cm²)が、 従来の一般的な固定化TiO₂光触媒では光量が絶対的に不 足していた、筆者らの分散型TiO₂光触媒を用いれば、濃 度がppm(=mg/L)オーダーの不純物であれば太陽光レ ベルの光強度でも10分以内に処理できる.

今後の世界人口の増加によって水質汚濁や飲料水不足 の問題が一層深刻化することが懸念されている.本技術 の適用範囲は有機物除去だけにとどまらず,アジア地域 のさまざまな水問題に対応できる.そのためには,水処 理装置のスケールアップや実際の原水を用いた実証実験 など研究課題を解決しなければならない.現在進行形の グローバルな水危機の状況下においてわれわれは,一刻 も早く行動を実践していく必要がある.

参考文献

- N. Gilbert, "Drug waste harms fish," Nature, vol.476, p.265, 2011.
- [2] T. Heberer, "Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data," Toxicology letters, vol.131, pp.5-17, 2002.
- [3] J. Blanco et al., "Compound parabolic concentrator technology development to commercial solar detoxification," Solar Energy, vol.67, pp.317-330, 2000.
- [4] G. Mascolo et al., "Photocatalytic degradation of methyl red by TiO₂: comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst," Journal of hazardous materials, vol.142, pp.130-137, 2007.
- [5] T. Oppenlander, "Photochemical purification of water and air," WILEY-VCH: Weinheim, 2003.
- [6] S. Lee et al., "Use of ultrafiltration membranes for the separation of TiO₂ photocatalysts in drinking water treatment," Industrial & Engineering Chemistry Research, pp.1712-1719, 2001.
- [7] T. E. Doll et al., "Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues-evaluation of the long-term stability of the photocatalytic activity of TiO₂," Water research, vol.39, pp.847-854, 2005.

執筆者紹介

猪野 大輔Daisuke Ino先端技術研究所Advanced Technology Research Labs.博士(理学)

<mark>丸尾ゆうこ Yuko Maruo</mark> 先端技術研究所 Advanced Technology Research Labs. 博士 (工学)

行天 久朗 Hisaaki Gyoten 先端技術研究所 Advanced Technology Research Labs. 博士(工学)